EXAMENS: BEP SESSIO	N 2006	N° du sujet	: 04.309
SECTEUR : 4 (Métier de la santé et de l'hygiène)		SUJET	FOLIO: Page 1 sur 5
EPREUVE : EG2 (Maths – Sciences)		VICE – RECTORAT	
DUREE DE L'EPREUVE: 2H00	COEF: 4	NOUVEL	LE - CALEDONIE

Les candidats répondront directement sur l'énoncé

La calculatrice est autorisée

Sujet de mathématiques

Exercice N°1 (1,5 point)

Calculer A sous forme de fraction irréductible si c = -3 et d = 4

$$A = \frac{1}{2}c - \frac{3}{4}d$$

Exercice N° 2 (1,5 point)

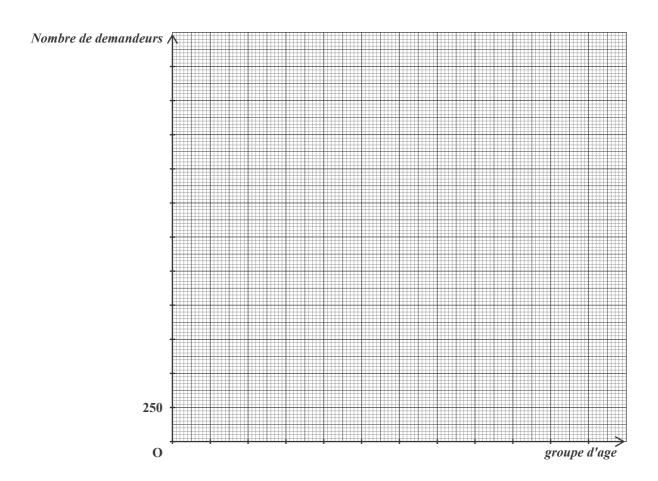
Résoudre l'équation suivante d'inconnue réelle x :

$$3x - 4 = 2x + 14$$

Exercice N° 3 (7 points)

En 2002, il y avait 10 511 demandeurs d'emploi en Nouvelle-Calédonie. La répartition des demandeurs d'emploi par groupe d'âge était la suivante :

Crown a d'âca	Pourcentage de demandeurs	Nombre de demandeurs	Centre des classes	$n_i x_i$
Groupe d'âge	d'emploi (%)	d'emploi n _i	x_{i}	
[16 ; 20 [6			
[20 ; 24 [24			
[24 ; 28 [23			
[28 ; 32 [10			
[32 ; 36 [10			
[36 ; 40 [9			
[40 ; 44 [8			
[44 ; 48 [5			
[48 ; 52 [5			
Total	100	10 511		


EXAMENS: BEP SESSIO	N 2006	N° du suj€	et: 04.309
SECTEUR : 4 (Métier de la santé et de l'hygiène)		SUJET	FOLIO: Page 2 sur 5
EPREUVE : EG2 (Maths – Sciences)		VICE – RECTORAT	
DUREE DE L'EPREUVE: 2H00	COEF: 4	NOUVE	CLLE - CALEDONIE

a) Compléter le tableau précédent.

(Tous les résultats seront arrondis <u>par excès</u> à l'entier le plus proche, seuls les deux derniers groupes d'âge seront arrondis <u>par défaut</u> à l'entier le plus proche)

b) Calculer l'âge moyen d'un demandeur d'emploi (Arrondir à l'entier le plus proche).

c) Tracer l'histogramme des effectifs de cette série statistique dans le repère ci-dessous

EXAMENS: BEP SESSIC	N 2006	N° du sujet : (04.309
SECTEUR : 4 (Métier de la santé et de l'hygiène)		SUJET	FOLIO: Page 3 sur 5
EPREUVE : EG2 (Maths – Sciences)		VICE – I	RECTORAT
DUREE DE L'EPREUVE: 2H00	COEF: 4	NOUVELLE	- CALEDONIE

Sujet de Sciences Physiques

Exercice N°4 (4 points)

a) Equilibrer les équations suivantes :

- b) Donner les noms des produits formés dans la deuxième réaction.
- c) On s'intéresse à <u>la première réaction</u> :
 - 1) Calculer les masses molaires des réactifs et celle du produit formé.

2) Calculer la masse de CuO obtenue par réaction complète de 127 g de cuivre. (**On donne** : M(C) = 12 g/mol ; M(O) = 16 g/mol ; M(Cu) = 63.5 g/mol)

Exercice N°5 (2 points)

Un cocktail de 13 jus de fruits contient 11,1 grammes de glucides (sucres) pour 100 ml de jus de fruits.

- a) Calculer la concentration massique du sucre dans ce cocktail.
- b) Calculer la concentration molaire du sucre dans le jus de fruits (arrondir le résultat à 10⁻² près par excès).

On prendra : M(sucre) = 180g/mol

EXAMENS: BEP SESSIC	N 2006	N° du sujet: 04	1.309
SECTEUR : 4 (Métier de la santé et de l'hygiène)		SUJET	FOLIO: Page 4 sur 5
EPREUVE : EG2 (Maths – Sciences)		VICE – R	ECTORAT
DUREE DE L'EPREUVE: 2H00	COEF: 4	NOUVELLE -	- CALEDONIE

Exercice N°6 (1 point)

Calculer l'énergie consommée par un fer à repasser de puissance 1850 W pendant 30 minutes de fonctionnement.

Exercice N°7 (3 points)

Une machine à laver de masse 150 Kg repose sur le sol.

- a) Calculer le poids de cette machine à laver (On prendra g = 10 N/Kg)
- b) La surface de contact au sol est assimilée à un carré de côté c=0,70 m. Calculer l'aire de cette surface, exprimée en m^2 .
- c) Calculer la pression exercée par la machine à laver sur le sol. (Arrondir le résultat à l'entier le plus proche).

EXAMENS: BEP SESS	ION 2006	N° du su	jet: 04.309
SECTEUR : 4 (Métier de la santé et de l'hygiène)		SUJET	FOLIO: Page 5 sur 5
EPREUVE : EG2 (Maths – Sciences)		VI	CE – RECTORAT
DUREE DE L'EPREUVE: 2H00	COEF: 4	NOUV	ELLE - CALEDONIE

FORMULAIRE DE MATHÉMATIQUES BEP SANITAIRE ET SOCIAL

Identités remarquables

$$(a+b)^2 = a^2 + 2 a b + b^2$$

 $(a-b)^2 = a^2 - 2 a b + b^2$
 $(a+b)(a-b) = a^2 - b^2$

Puissance d'un nombre

$$(a b)^m = a^m b^m$$
; $a^{m+n} = a^m a^n$; $(a^m)^n = a^{mn}$

Racines carrées

$$\sqrt{a\;b}\;=\sqrt{a}\;\;\sqrt{b}\;\;;\;\sqrt{\frac{a}{b}}\;=\frac{\sqrt{a}}{\sqrt{b}}$$

Suites arithmétiques

Terme de rang $1:u_1$; Raison : rTerme de rang n:

$$u_n = u_{n-1} + r$$

 $u_n = u_1 + (n-1) r$

Suites géométriques

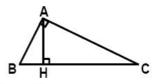
Terme de rang $1:u_1$; Raison: q

Terme de rang n:

$$u_n = u_{n-1} q$$
$$u_n = u_1 q^{n-1}$$

Statistiques

Moyenne \bar{x} :

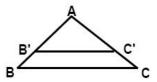

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N}$$

Écart type

$$\sigma^{2} = \frac{n_{1}(x_{1} - \overline{x})^{2} + n_{2}(x_{2} - \overline{x})^{2} + \dots + n_{p}(x_{p} - \overline{x})^{2}}{N}$$

$$= \frac{n_{1}x_{1}^{2} + n_{2}x_{2}^{2} + \dots + n_{p}x_{p}^{2}}{N} - \overline{x}^{2}$$

Relations métriques dans le triangle rectangle



$$AB^2 + AC^2 = BC^2$$

$$AH \cdot BC = AB \cdot AC$$

$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Énoncé de Thalès (Relatif au triangle)

Si (BC) // (B'C')

alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Position relative de deux droites

Les droites d'équations

$$y = a x + b$$
 et $y = a' x + b'$

sont :

- parallèles si et seulement si a = a'

- orthogonales si et seulement si a a' = -1

Calcul vectoriel dans le plan

$$\begin{split} \vec{v} & \begin{vmatrix} x \\ y \end{vmatrix}; \vec{v} \cdot \begin{vmatrix} x' \\ y' \end{aligned}; \vec{v} + \vec{v} \cdot \begin{vmatrix} x+x' \\ y+y' \end{aligned}; \lambda \vec{v} & \begin{vmatrix} \lambda x \\ \lambda y \end{vmatrix} \\ \|\vec{v}\| &= \sqrt{x^2 + y^2} \end{split}$$

Calcul d'intérêts

C: capital; t: taux périodique;

n : nombre de périodes ;

A: valeur acquise après n périodes.

Intérêts simples	Intérêts composés
I = C t n	$A = C \left(1 + t \right)^n$
A = C + I	3